
World Transactions on Engineering and Technology Education © 2006 UICEE
Vol.5, No.3, 2006

 509

INTRODUCTION

Nowadays, automated systems have been intensively explored
and implemented to help human beings perform their daily
activities. In the industrial field, automated systems support
many tasks, such as storing and retrieving goods to and from
storage, performing automated welding inspection, automatic
painting, etc. People tend to develop manufacturing systems
that can be easily adapted to any environment. One application
of such a system is normally used for material handling and
transportation. An example of this system is an Autonomous
Mobile Robot (AMR). The behavioural complexity of this
robot is very high. One way to trace it back is by developing a
micromouse robot, which is an electro-mechanical miniature of
an AMR assigned to perform tasks in an unknown maze. It has
a freedom to move around within its environment. The maze
consists of a labyrinth and walls that construct the maze all
together. The robot is ordered to move from one origin point to
the final destination point, which is located in the centre of the
labyrinth. In fact, this labyrinth is an unknown maze for the
robot that has never visited it before [1-5].

The searching should be performed autonomously without any
human intervention, which means an algorithm is needed to
enable actions without any human help. Searching algorithms
for this kind of task have been explored and improved to reach
the target or finish line as fast as possible. This research
focuses on developing a searching algorithm based on the
implementation of a potential value concept and comparing the
results with some existing algorithms used for similar tasks.

PROBLEM IDENTIFICATION

Some problems found here include identifying how to build a
searching algorithm in a labyrinth that has never been mapped
to reach a goal point and how the design of a simulation system
to examine the algorithm looks like.

IEE MICROMOUSE RULES

A micromouse robotic competition has to comply with IEE
micromouse standard rules. These competition rules consists of
three parts, ie the labyrinth rule, robot rule and competition rule
[6][7]. The labyrinth comprises 16 x 16 cells (square form) of
18 cm x 18 cm. The wall thickness and height are 1.2 cm and 5
cm, respectively. The outermost wall covers the whole
labyrinth. The coating on the top and wall side are chosen so
that it has capability to reflect an infrared beam, while the
coating on the floor should absorb the beam.

An example of a valid labyrinth is depicted in Figure 1. The
robot starting position is at one cell at the corner of labyrinth
(designated as S). The cell must have three walls surrounding
it. The starting point (cell) has an opening heading North, with
the outermost wall of the labyrinth heading West and South.
The centre of the labyrinth is a square consisting of four square
units and becomes the destination point of the mouse robot
(designated as T). This cell has only one entrance (way).

Figure 1: The Japanese National Championship layout.

The robot has to be a self-contained robot or it is not a
remotely controlled robot. The robot is prohibited to leave

The design of a maze solving system for a micromouse by using a potential value
algorithm

Bagus Arthaya, Ali Sadiyoko & Ardelia Hadiwidjaja

Parahyangan Catholic University

Bandung, Indonesia

ABSTRACT: Automation has recently influenced the industrial sectors in a wide range. To be able to survive in the competitive
world, a firm has to keep increasing its efficiency, effectiveness and productivity. Automated systems have been developed to
achieve that objectives and have becoming more applicable in industrial sectors. These systems are designed to ease and make safe
difficult and hazardous human tasks such as welding, spray painting, car-body assembling, reactor dismantling and so on. An
example of automated systems is Autonomous Mobile Robot (AMR). A computer simulation model of AMR has been developed
and a certain degree of intelligence is implanted. This is needed when the robot has to take its own decision in determining the path.
The task of this robot is to reach a target region which is located in the centre of a certain labyrinth. The labyrinth has never been
mapped before and the robot has to find the easiest way to get to the target. The search should be performed autonomously without
any human intervention. Some simulations show the capability of the robot in searching its goal and it behaves differently depending
on the complexity of the maze.

 510

anything behind during its journey in the labyrinth. The robot
is also not allowed to jump, climb, scratch, break or destroy the
walls of labyrinth. The robot’s dimensions are limited by the
cell size and must not exceed 25 cm x 25 cm.

The time needed for travelling from the starting point to the
destination point is called run time. The total time for each run
is from the point that the robot is activated for the first time
until the distance is measured; this is called maze time or
search time. If the robot needs manual assistance at any time
during the contest, then the robot is considered to be in touch.
The scoring judgement is based on these three parameters.

Each robot has maximum time of only 10 minutes to explore
the labyrinth. Scoring for the micromouse robot consists of
handicapped time calculation for each run. Handicapped time
is measured from the run time, search penalty and touch
penalty.

DESIGN OF THE SEARCHING ALGORITHM

Potential value is any value possessed by any cell (the square
area) that represents the minimum distance in numbered
rectangular steps from the destination point located at the
centre of the labyrinth. Therefore, the destination point will
certainly have zero value (0). The potential value of each cell is
shown in Figure 2, along with a generated path.

13

12

11

10

9

8

7

12

11

10

9

8

7

6

11

10

9

8

7

6

5

10

9

8

7

6

5

4

9

8

7

6

5

4

3

8

7

6

5

4

3

2

4

7 6

6

5

5

4

3

2

3

2

1

1 0

14 13 12 11 10 9 8 7

13

12

11

10

9

8

7

12

11

10

9

8

7

6

11

10

9

8

7

6

5

10

9

8

7

6

5

4

9

8

7

6

5

4

3

8

7

6

5

4

3

2

4

76

6

5

5

4

3

2

3

2

1

10

1413121110987

13

12

11

10

9

8

7

12

11

10

9

8

7

6

11

10

9

8

7

6

5

10

9

8

7

6

5

4

9

8

7

6

5

4

3

8

7

6

5

4

3

2

4

7 6

6

5

5

4

3

2

3

2

1

1 0

14 13 12 11 10 9 8 7

13

12

11

10

9

8

7

12

11

10

9

8

7

6

11

10

9

8

7

6

5

10

9

8

7

6

5

4

9

8

7

6

5

4

3

8

7

6

5

4

3

2

4

76

6

5

5

4

3

2

3

2

1

10

1413121110987

Figure 2: (a) The potential value for each cell and (b) the
generated path based on the potential values.

Heading defines the direction or orientation of the robot when
it is moving. There are four headings used to define it, ie west,
south, east and north. Other variables used in designing the
algorithm are as follows:

• Flag: a variable indicating if the cell has been visited

(false if cell has not been visited and true otherwise);
• Marking: a variable indicating prohibition, ie if a cell can

be visited or not. Any cell should not be visited if the
marking value is true, with three elements setting the
marking value to be true: the cell is a dead end (no way
out); the cell is a part of dead end; or the cell is part of a
closed looping path;

• Count: a value identifying how many times the cell has
been visited; after the robot arrives at a certain cell, the
count variable of this cell is increased by one;

• Way: shows the number of alternative ways that can be
chosen by the robot. The possible situations are: no way
(dead end); one choice, two choices or three choices. This
becomes the criteria in making a decision to define which
direction should be taken.

When the robot resides in a certain cell, it will perform the
following steps:

• First, check whether or not the cell has been visited;
• Check where the walls are;
• Calculate the number of ways;
• Make a decision based on the available number of ways;
• Move between cells, check for closed loop paths and dead

ends, and update cell variables;
• Finally, check if the destination cell has been reached.

Strategy for Effective Movement

The main behaviour of the micromouse robot is the capability
to make a decision in difficult situations, as follows:

• Execute a dead end procedure (Way=0) when the robot

faces three walls as shown at point G in Figure 2(b). Cell
G is then marked true and the robot turns around 180°;

• Execute a 1-way procedure (Way=1) when there is only
one possible way to go, as depicted in Figure 2(b) from
the starting point to A, from D until E, and from G to one
cell before F;

• Execute a more_than_1-way procedure (Way=2 or 3),
when there is more than one way to go. At cell F,
more_than_1-way procedure is accomplished where there
are two ways. The robot turns right as the right side cell
has a lower potential value (6), which is smaller then the
other cell (value of 8).

All of these procedures, ie dead end, 1-way, and more_than_1-
way procedures, are equipped with some criteria in making a
decision so that the robot can determine which is the best way
or which is the next cell to be visited. If the robot has two or
three alternative ways, then the first criteria that applies is the
flag of the neighbouring cell. A flag is a sign given to indicate
whether the cell has been visited before. The first possibility is
that at least one neighbouring cell has not been passed. In this
situation, the robot will choose the unvisited path (cell). But if
there is more than one unvisited cell, then the decision is based
on the potential value. Potential value criteria is a method to
choose alternative paths by selecting the neighbouring cell with
the smallest potential value. If there are two cells having the
smallest value, then a straight path is selected. Forward
movement (path) is set to have a higher priority than turning left
or right. This is achieved by considering that moving forward
needs less effort than turning the robot. The lower priority is, of
course, turning right and then left.

Cell Marking Procedure

When facing a dead end point, the robot should mark all the
cells that belong to this end point, as shown Figure 3.

Figure 3: Dead end cell and cell as parts of dead end.

(a) (b)

 511

The cells identified to be dead end cells are D, H, J and N. the
cells that belong to the dead end are E until F, P and O, and K.
Once the cells are marked, then the next time the robot comes
to this point, it will not take these points as an alternative way.

Confusing Cells and the Avoidance of Closed Loop Paths

In a certain situation, all neighbouring cells in the path have
been visited (Flag=true). In this case, the decision criteria is
count. The count limit is set to 4 as the minimum number to
indicate that the robot has come back to the same cell from the
same direction. An example is shown in Figure 4, indicating
when the robot faces three alternative paths, as follows:

• As the robot moves from A to B, it detects three paths, ie

turn left to D, forward to C, or turn right to E. The
potential value of E and C are the same. The priority for
forward direction is then applied and the robot moves to
cell C. The count at B is set to 1 (Figure 4(a));

• When going back to B from A, the count at B is increased
to 2. Of the three alternatives, one path has been passed,
so it moves to E, which has never been passed and has the
smallest potential value (Figure 4(b));

• When returning to B from A, the count at B increases to 3.
There is only one possible path left; it then moves to the
only cell that has never been passed, ie D (Figure 4(c));

• When the robot returns once more to B, the count at B is
set finally to 4 with all alternative paths having been
passed (Figure 4(d)).

7

6

5

4

6

5

5

4 3

A B C

D

 E

7

6

5

4

6

5

5

4 3

A B C

D

 E

7

6

5

4

6

5

5

4 3

A B C

D

 E

7

6

5

4

6

5

5

4 3

A B C

D

 E

(a) (b) (c) (d)
Figure 4: Multiple robot arrivals at the same cell.

Figure 5(a) depicts an example of when the robot faces three
alternative paths at point A. From E, it moves to A and the
count at cell A is increased by 1, for instance to 4. It then
checks the existence of the walls and detects there to be no wall
on the left front and right side. It then checks the marking of all
the cells and determines that all are false. So the robot has three
choices: move to D, turn left to B, or turn right to C. As the
count limit (4) is reached, the decision is then based on the
count criteria. It is assumed that the count at cell B, C and D
are 1, 2 and 2, respectively. The robot then selects the cell with
the smallest count, ie cell B.

Figure 5: (a) The robot faces three visited paths, and (b) it faces
a closed looping path.

In the next trip, the robot goes back to cell A from B. The
count at A now becomes 5. All the three paths for the robot, ie

straight to C, turn left to D and turn right to E, have been
visited. The count of A is already higher than 4. The next step
is to check the count of the neighbouring cell. It is determined
that the counts are all the same: 2. Based on these values, the
next test is to check the potential values of all the neighbouring
cells’ potential values, with D and C being the smallest
numbers. Finally, the robot chooses a straight movement to C
based on the forward movement priority.

In some particular places, the robot arrives at a confusing point,
where it arrives at the same point again after travelling some
distance, as shown in Figure 5(b) and marked by a circle. An
algorithm is also developed in order to identify whether a part
of the maze forms a closed looping path. In this case, B, C, D,
E, F and G are cells that form a closed looping path. When the
robot arrives at cell B from cell G, it checks for a second time
whether cell B has been visited. As the robot has previously
visited cell B, then one previous cell is checked, indicating that
cell G is 1-way and the robot can only move to cell B. This
checking is repeated for all previous cells until finding a cell
that has more than 1-way, ie cell B. Since this cell is the
current position of the robot, it concludes that those cells (B, C,
D, E, F and G) are part of a closed looping path and the
marking is then set to true.

THE DEVELOPMENT OF THE SIMULATION

The algorithm explained above is examined for 10 labyrinth
(maze) types in a simulation program developed in Turbo
Pascal and Borland Delphi 7 programming languages [8][9].
The 10 labyrinths are the USA, Japan, Canada, Singapore, UK,
APEC, ITB, British, Japan2 and TI Unpar mazes. Screenshots
of this simulation program is shown in Figure 6(a). The run
button starts the simulation according to the type of maze
chosen in the Maze Menu window. The robot’s speed can be
adjusted using the track bar by dragging it to the left or right.
The stop button immediately halts the simulation at the robot’s
current position, with the left button space showing the total
number of cells that the robot has visited. The close button
terminates and exits the program. Figure 6(b) shows one try
when the robot was exploring the TI Unpar maze.

Figure 6: (a) Screenshots of the simulation program and (b) the
exploration of the TI Unpar maze.

GENERAL ANALYSIS

To evaluate the algorithm developed in this research, three
different algorithms have been executed for the same maze, ie
wall following, DFS+ (Depth First Search+) and potential value.
The exploration results of the three compared algorithms are
shown in Figures 7, 8(a) and 8(b).

In Figure 7, one can see that when the robot implements the wall
following algorithm, it fails to reach the destination point.

(a) (b)

 512

Conversely, the DFS+ and potential value algorithms lead the
robot to successfully reach the destination point. The
exploration result of a certain maze shows that using the DFS+
algorithm results in the robot travelling longer than if the
potential value algorithm were used. When the ITB maze is
chosen, the robot travelling distance using the DFS+ algorithm
is 71 times the movement to reach the goal, but when using the
potential value algorithm, the robot moves only 41 times.

Figure 7: Exploration utilising the wall-following algorithm.

The route passed by the robot using both algorithms is still the
same until the fourth cross section (denoted by the circle in
Figure 8(a) and the circle in Figure 8(b)). This is caused by the
fact that both algorithms make the same decision in
approaching the goal. In the DFS+ algorithm, the goal is a
labyrinth having the highest level, while for the potential value
algorithm, the goal is a cell that has the lowest value. At the
fourth cross section, different decisions are taken. Using the
DFS+ algorithm, the robot faces an equal option condition,
(equal labyrinth level=3) and the priority set is to turn right.
This situation is handled differently in the potential value
algorithm. The robot turns left as the potential value of the left
cell is smaller than the value of the right cell. The results of the
travelling distance are tabulated in Table 1.

Figure 8: An exploration of the ITB maze using: (a) the DFS+
algorithm and (b) the potential value algorithm.

For the Japan, Canada, ITB, TI Unpar and APEC mazes, the
count limit has no effect on the travelling distance. In contrast,
the USA, Singapore, UK, British and Japan2 mazes’ different
count limits correspond to different travelling distances. The
USA and Singapore labyrinths have a similar pattern, ie the
higher the limit, the shorter the travelling distance. The
opposite is the case for the UK labyrinth, where a higher count
limit makes for longer travelling distances. The British and
Japan2 labyrinths show hyperbolic curves with opposing
directions to each other. In conclusion, the optimal count limit

depends highly on the type of labyrinth, while the labyrinth
itself has not been mapped or is unknown for the robot.

Table 1: A comparison of the travelling distances for the
different labyrinth types.

Count Limit 2 3 4 5 6 7
Japan 62 62 62 62 62 62
Canada 186 186 186 186 186 186
ITB 41 41 41 41 41 41
TI Unp. 60 60 60 60 60 60
APEC 64 64 64 64 64 64
USA 335 335 249 217 217 217
Singapore 315 307 293 195 195 195
UK 367 367 617 921 995 1349
British 320 294 264 272 280 288

M
az

e
ty

pe

Japan2 342 358 756 962 414 462

Figure 6(a) depicts the exploration in the TI Unpar maze. It
needs 60 times movements to reach the destination point. The
robot nicely reaches the target, while using the other two
algorithms leads to different phenomena. The wall following
algorithm fails to perform the task, while the DFS+ makes for
longer travelling distances.

CONCLUSIONS

Some conclusions drawn from this exercise are described as
follows:

• The searching algorithm for unmapped labyrinth consists

of several key steps: checking of the cell status and
existence of walls; calculation of the number of ways and
the making of a decision based on the available number of
paths; movement between cells while also checking
whether the destination cell has been reached or not;

• The simulation program has been developed to examine
the potential value algorithm and has been executed for 10
labyrinth types;

• The potential value algorithm has successfully reached the
target for the 10 types of labyrinth;

• The algorithm developed here is capable of determining a
dead end, part of a dead end and closed loop paths;

• The algorithm has been built to prevent the robot from
becoming trapped in a closed loop path.

REFERENCES

1. Micromouse UK (2004), http://micromouse.cs.rhul.ac.uk/
2. MicroMouseInfo.com, http://www.micromouseinfo.com/
3. University of California, Berkeley, IEEE Student Branch

(2006), http://ucsee.eecs.berkeley.edu/
4. Dr Robin Sarah Bradbeer (2006),

http://www.ee.cityu.edu.hk/~rtbrad/
5. Mutijarsa, K. et al, Membangun robot tikus cerdas. Proc.

Conf. on the World of Automation, Bandung, Indonesian,
A-1-40 (2003) (in Indonesian).

6. Micromouse Information Centre Competition Rules (2004),
http://micromouse.cannock.ac.uk/rules.htm

7. UK Micromouse Championship Rules
http://www.tic.ac.uk/micromouse/toh.asp

8. Borodich, Y. and Leonenko, V., The Revolutionary Guide
to Turbo Pascal. Birmingham: WROX Press (1992).

9. Guldner J. et al, Multiple wave propagation for global path
planning. Proc. 4th Inter. Conf. on Intelligent Autonomous
Systems, Karlsruhe, Germany, 427-434 (1995).

(a) (b)

